Federated Learning

A Primer for Mathematicians
de

Éditeur :

Springer

Paru le : 2025-08-01

This book serves as a primer on a secure computing framework known as federated learning. Federated learning is the study of methods to enable multiple parties to collaboratively train machine learning/AI models, while each party retains its own, raw data on-premise, never sharing it with others. Th...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
147,69
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos

Auteur

Éditeur

Collection
n.c

Parution
2025-08-01

Pages
82 pages

EAN papier
9789819692224

Auteur(s) du livre


Mei Kobayashi holds an A.B. from Princeton University in Chemistry and a M.A. and Ph.D. in mathematics from the University of California at Berkeley. She was Researcher at IBM for 26 years working on: inverse problems, control theory, airflow simulations digital steganography, applications of wavelets, and text analysis. Subsequently, she joined NTT communications as Data Science Specialist, where she was Co-Manager of a team to initiate digital transformation in the Customer Services Division. She is currently Member of the Research and Development Team at EAGLYS. In addition to her work, she was Visiting Associate Professor at the University of Tokyo and Visiting Researcher at OIST, has taught at Japanese National Universities in: Kyoto, Tsukuba, Hiroshima, and Tokyo, and is currently teaching at Tsuda Women's University. She has been serving on the Editorial Board of the Communications of the ACM for over a decade and was Columnist for SIAM News.

Caractéristiques détaillées - droits

EAN PDF
9789819692231
Prix
147,69 €
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
5560 Ko
EAN EPUB
9789819692231
Prix
147,69 €
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
6492 Ko

Suggestions personnalisées