Robust Explainable AI

de

,

Éditeur :

Springer

Paru le : 2025-05-24

The area of Explainable Artificial Intelligence (XAI) is concerned with providing methods and tools to improve the interpretability of black-box learning models. While several approaches exist to generate explanations, they are often lacking robustness, e.g., they may produce completely different ex...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
47,46
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2025-05-24

Pages
71 pages

EAN papier
9783031890215

Auteur(s) du livre


Francesco Leofante is a researcher affiliated with the Centre for Explainable AI at Imperial College. His research focuses on explainable AI, with special emphasis on counterfactual explanations for AI-based decision-making. His recent work highlighted several vulnerabilities of counterfactual explanations and proposed innovative solutions to improve their robustness. Matthew Wicker is an Assistant Professor (Lecturer) at Imperial College London and a Research Associate at The Alan Turing Institute. He works on formal verification of trustworthy machine learning properties with collaborators form academia and industry. His work focuses on provable guarantees for diverse notions of trustworthiness for machine learning models in order to enable responsible deployment.

Caractéristiques détaillées - droits

EAN PDF
9783031890222
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
2509 Ko
EAN EPUB
9783031890222
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
4721 Ko

Suggestions personnalisées