Understanding Atmospheric Rivers Using Machine Learning

de

,

Éditeur :

Springer

Paru le : 2024-06-22

This book delves into the characterization, impacts, drivers, and predictability of atmospheric rivers (AR). It begins with the historical background and mechanisms governing AR formation, giving insights into the global and regional perspectives of ARs, observing their varying manifestations across...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
47,46
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos


Éditeur

Collection
n.c

Parution
2024-06-22

Pages
74 pages

EAN papier
9783031634772

Auteur(s) du livre


Prof. Manish Kumar Goyal is a Chair professor- BIS Standardization and Dean, Infrastructure Development  at Indian Institute of Technology Indore. His research interests include water resources engineering, GIS, and remote sensing applications in water and environment and climate change. He received a B.Tech. degree in Civil Engineering from the National Institute of Technology Warangal with distinction and an M.Tech. degree from the Indian Institute of Technology Roorkee. After a brief stint in corporate, he pursued a Ph.D. degree at IIT Roorkee in collaboration with the University of Waterloo, Canada. He went on to pursue further research as a postdoctoral fellow at Nanyang Technological University, Singapore, and McGill University, Canada. He holds more than 100 publications in different domains of GIS and Remote Sensing, Water Resources, Climate Change, Hydrological and Hydrodynamic Modeling, Snow and Glacier Melt, Soil Carbon Sequestration, Anthropogenic Changes, Risk, and Resilience.His name has appeared in Top 2% scientist , list prepared by Stanford University in 2020, 2021, 2022 and 2023. 

Caractéristiques détaillées - droits

EAN PDF
9783031634789
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
5683 Ko
EAN EPUB
9783031634789
Prix
47,46 €
Nombre pages copiables
0
Nombre pages imprimables
7
Taille du fichier
41431 Ko

Suggestions personnalisées