Binary Representation Learning on Visual Images

Learning to Hash for Similarity Search
de

Éditeur :

Springer

Paru le : 2024-06-08

This book introduces pioneering developments in binary representation learning on visual images, a state-of-the-art data transformation methodology within the fields of machine learning and multimedia. Binary representation learning, often known as learning to hash or hashing, excels in converting h...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
180,19
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos

Auteur

Éditeur

Collection
n.c

Parution
2024-06-08

Pages
200 pages

EAN papier
9789819721115

Auteur(s) du livre


Zheng Zhang is a full Professor at School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China. He is the deputy director of the Shenzhen Key Laboratory of Visual Object Detection and Recognition, Shenzhen, China. Dr. Zhang’s research interests mainly focus on multimedia content analysis and understanding, especially multimedia retrieval, multi-modal learning, and big data mining. He has published more than 100 technical papers in prestigious international journals and conference proceedings, with over 7,000 citations according to Google Scholar (h-Index: 40). He is a co-recipient of paper awards in ACM Multimedia Asia'21, EAI ICMTEL'22, and SMARTCOMP'14.  He was the recipient of the CAAI Outstanding Young Research Achievement Award and has also been featured in the 'World's Top2% Scientists' for consecutive years. He serves as the Editorial Board Member of IEEE Trans. on Affective Computing (IEEE TAC), IEEE Journal of Biomedical and Health Informatics (IEEE JBHI), and Elsevier Information Fusion (INFFUS), as well as the Area Chair of ICML, CVPR, ACM MM, and others. He is an IEEE and CCF Senior Member.

Caractéristiques détaillées - droits

EAN PDF
9789819721122
Prix
180,19 €
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
14848 Ko
EAN EPUB
9789819721122
Prix
180,19 €
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
40745 Ko

Suggestions personnalisées